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Abstract: Image segmentation is a challenging task in the field of image processing and computer
vision. In order to obtain an accurate segmentation performance, user interaction is always used in
practical image-segmentation applications. However, a good segmentation method should not rely on
much prior information. In this paper, an efficient superpixel-guided interactive image-segmentation
algorithm based on graph theory is proposed. In this algorithm, we first perform the initial
segmentation by using the MeanShift algorithm, then a graph is built by taking the pre-segmented
regions (superpixels) as nodes, and the maximum flow–minimum cut algorithm is applied to get
the superpixel-level segmentation solution. In this process, each superpixel is represented by a
color histogram, and the Bhattacharyya coefficient is chosen to calculate the similarity between any
two adjacent superpixels. Considering the over-segmentation problem of the MeanShift algorithm,
a narrow band is constructed along the contour of objects using a morphology operator. In order
to further segment the pixels around edges accurately, a graph is created again for those pixels in
the narrow band and, following the maximum flow–minimum cut algorithm, the final pixel-level
segmentation is completed. Extensive experimental results show that the presented algorithm obtains
much more accurate segmentation results with less user interaction and less running time than
the widely used GraphCut algorithm, Lazy Snapping algorithm, GrabCut algorithm and a region
merging algorithm based on maximum similarity (MSRM).

Keywords: interactive image segmentation; superpixel; graph theory; maximum flow–minimum cut;
color histogram; Bhattacharyya coefficient

1. Introduction

Image segmentation, which aims to extract objects of interest from a complex background
for object detection, tracking, recognition, scene analysis, etc., is one of the basic problems in
image processing, and has been widely used in pattern recognition and computer vision [1–7].
Many image-segmentation algorithms have been proposed in recent years [5–26]. According to
different image types, image segmentation can be divided into monochrome and color image
segmentation. According to image representation, image segmentation can be divided into single
scale and multi-scale approaches. According to the principle of operation, image segmentation
can be divided into spatially blind and spatially guided methods. According to whether priori
knowledge is provided, image segmentation can be divided into automatic and interactive
segmentation. For natural images of various types and with complicated content, an interactive
segmentation-based method is usually used, because its segmentation is more consistent with users’
subjective intentions [12–20]. GraphCut is one of the generally used interactive segmentation
algorithms [13–19] due to its global optimization, strong numerical robustness, high execution
efficiency, free topological structure of partitioned weighted graph, and N-D image-segmentation
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ability [13–15]. As a pre-segmentation solution, superpixel segmentation has been paid more
attention and an abundance of superpixel segmentation algorithms have been proposed in recent
years [7,21–26], such as watershed algorithms [21–24], MeanShift algorithm [25], turbopixels [26] etc.
Superpixel algorithms group pixels into perceptually meaningful regions which can capture image
redundancy and greatly reduce the complexity of subsequent image processing such as an object’s
segmentation, detection, tracking and recognition tasks [6,7,18,20].

A good interactive image-segmentation method must perform accurate segmentation with
minimal user interaction and less feedback time [17]. GraphCut is a representative interactive
image-segmentation algorithm. It takes pixels as nodes to construct a weighted directed graph, and the
maximum flow–minimum cut algorithm [14] is applied to obtain the global solution. Unfortunately,
this algorithm only considers gray scale images, and hence the segmentation results are not good when
the image content is complex. Moreover, when the pixel values in the foreground and background are
closer in the gray scale, this algorithm usually requires users to provide a lot of interactive information
to derive the ideal segmentation results. In addition, since pixels are used as nodes, the number
of nodes in the graph model constructed by GraphCut algorithm would be huge when the image
size is large, which also leads to the maximum flow–minimum cut algorithm taking a great deal of
execution time. To overcome these shortcomings, Li et al. proposed the Lazy Snapping segmentation
algorithm [18]. In this algorithm, the WaterShed algorithm [21] is first used to pre-segment images
and a weighted directed graph is constructed by rendering the partitioned regions as nodes, and
the maximum flow–minimum cut algorithm is then used to solve the graph partition problem.
Finally, a manual adjustment scheme is adopted to make the segmentation results more accurate.
This Lazy Snapping algorithm, however, has several major issues: (1) because the WaterShed algorithm
only uses the gradient information of grayscale images, the over-segmentation is serious, and the
number of regions of the pre-segmentation results is still large; (2) this algorithm uses the mean of
color information to characterize each region, which is too simple to accurately represent the color
distribution of each region; (3) in the modeling process, a K-means clustering algorithm is chosen,
where the clustering performance is greatly affected by the initial conditions and disturbing factors;
(4) this algorithm requires a lot of coarse-tuning and fine-tuning in the process of interaction, making
the entire interactive process very complicated.

Compared with the WaterShed algorithm, the MeanShift segmentation algorithm [25] has
been more widely studied and has a wider range of applications due to its excellent segmentation
performance. The MeanShift algorithm makes full use of the color information, which suppresses
over-segmentation effectively and the number of segmentation regions has been significantly reduced.
Combining pre-segmentation by the MeanShift algorithm with color histogram representation for each
region, Ning et al. proposed a region-merging algorithm based on maximum similarity (MSRM) [20].
By contrast with the maximum flow–minimum cut algorithm, a regional automatic merging mechanism
is used to complete the color image segmentation for the MSRM algorithm. However, this algorithm
only considers the similarity between adjacent regions and ignores the inter-relationship between
each region with interaction information. In the process of region merging, the color histogram of
each region needs to be made and simultaneously the similarity between adjacent regions needs to be
calculated, and the whole space-time cost overhead is hence very expensive. In addition, the MSRM
algorithm does not consider the over-segmentation problem introduced by the MeanShift algorithm,
which leads to a large number of error segmentations around the edge of the targets.

To simplify the process of user interaction, Rother et al. proposed the GrabCut algorithm [19].
This algorithm establishes the initial foreground and background models, respectively, according to
a rectangular area marked by users. Since in the rectangular area both foreground and background
information are contained, the algorithm iteratively updates the foreground and background models
through the iterative maximum flow–minimum cut scheme and iteration stops until the global energy
solution is converged. In the initial step, only the background areas are determined accurately, so the
final segmentation results for the GrabCut algorithm are affected by the initial background model.
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In this paper, we present an efficient superpixel-guided interactive image-segmentation algorithm
based on graph theory. Firstly, MeanShift algorithm is applied to pre-segment an image into regions
(superpixels), and then the proposed algorithm constructs a weighted directed graph whose nodes
are composed of the pre-partitioned regions. This model not only considers the correlation between
adjacent superpixels, but also takes the relationship between each superpixel and the interaction
information into account. Most importantly, we use the color histogram to represent each superpixel,
which can accurately represent the regional color distribution. As with the MSRM segmentation
algorithm, we choose Bhattacharyya coefficients to measure the similarity between superpixels, and
the maximum flow–minimum cut algorithm is then performed to obtain the first-stage segmentation
results. By considering the edge leakage problem caused by the MeanShift algorithm, the proposed
algorithm creates a narrow band region by using the morphological operation at the boundary of
targets based on the first-stage segmentation results. At the same time, the foreground and background
regions are determined, and the corresponding foreground and background models are established by
Gaussian mixed models (GMMs). Finally, a graph model is rebuilt again by considering pixels as nodes
in the narrow band region and the final segmentation results are obtained by using the maximum
flow–minimum cut algorithm. Through a large number of experiments, it is shown that the proposed
algorithm achieves better segmentation results with less user interaction and execution time compared
with the GraphCut, Lazy Snapping, GrabCut and MSRM algorithms.

The remainder of this paper is organized as follows: Section 2 summarizes the related work
including the GraphCut, LazySnapping, GrabCut and MSRM algorithms. Section 3 introduces the
motivation of the proposed algorithm and the detail is described in Section 4. Section 5 performs
extensive experiments to verify the proposed algorithm. Section 6 concludes this paper.

2. Related Work

2.1. GraphCut Algorithm

The GraphCut algorithm [13] transforms the image-segmentation problem into graph-partition
problem. It represents an image as a weighted directed graph G = (V, E, W), where V represents nodes
of the graph corresponding to pixels in the image; E denotes the edges of the graph corresponding
to connection between two adjacent nodes (usually for four or eight in the neighborhood); W is the
weight of edges used to indicate the similarity of adjacent nodes. Before executing the maximum
flow–minimum cut algorithm, users will be asked to first input the interaction information to mark the
foreground (indicated by a set F) and the background (indicated by a set B); the other unmarked pixels
are indicated by a set U and V = F ∪ B ∪U. The foreground and background are modeled by the
gray-scale histogram, and the two virtual nodes are then constructed as the source node (corresponding
to the foreground model) and the sink node (corresponding to the background model). Among them,
the weight is corresponding to the edges between any node in set V and the source/sink nodes,
indicating the tendency that the corresponding node belongs to the foreground or the background.
Figure 1 shows a graph cut example for a 3 × 3 image, where Figure 1a is a directed graph composed
of a pixels set V and two virtual nodes source and sink (denoted as s and t), and Figure 1b is an optimal
cut solved by the maximum flow–minimum cut algorithm.
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The GraphCut algorithm solves the optimal segmentation problem by minimizing the following
energy function,

E(ι) = λ·R(ι) + B(ι) (1)

where ι is the segmented label value, 0 indicates the background and 1 indicates the foreground. R(ι)
represents the area item, B(ι) represents the edge item, and the parameter λ (λ ≥ 0) is the balance
factor between the region item and the edge item. R(ι) and B(ι) are defined as follows,

R(ι) = ∑
i∈V

Ri(ιi)

B(ι) = ∑
{i,j}∈E

∣∣ιi − ιj
∣∣·B{i,j} (2)

where, Ri(ιi) and B{i,j} are defined as follows,
Ri(ιi = 1) = K Ri(ιi = 0) = 0 ∀i ∈ F
Ri(ιi = 1) = 0 Ri(ιi = 0) = K ∀i ∈ B
Ri(ιi = 1) = − ln Pr(Ii|B) Ri(ιi = 0) = − ln Pr(Ii|F) ∀i ∈ U

(3)

B{i,j} = exp

(
−
(Ii − Ij)

2

2σ2

)
· 1
dist(i, j)

(4)

where, K = 1 + max
i∈V

∑
j: {i,j}∈N

B(i, j), N represents the neighborhood of pixels. Ii represents the gray

value of pixel i, Pr(Ii|F) represents the probability distribution value of Ii in the histogram of the
foreground F, and Pr(Ii|B) represents the probability distribution value of Ii in the histogram of the
background B. The parameter σ is used to control the gray level difference between pixels i and j,
dist(i, j) represents the spatial distance between pixels i and j.

2.2. Lazy Snapping Algorithm

Since the GraphCut algorithm chooses pixels as nodes to construct a directed graph, the
corresponding number of nodes is huge, which largely reduces the efficiency of this algorithm.
In response to this problem, Li et al. proposed the Lazy Snapping algorithm [18]. By using the
WaterShed algorithm [21], they pre-segment images and replace pixels in the GraphCut algorithm with
processed regions as nodes. In addition, this algorithm used the color information instead of the gray
information in the original GraphCut algorithm, which further improves the segmentation accuracy.
Based on the region representation for graph nodes, Li et al. defined the following energy function,

E(ι) = ∑
i∈V

E1(ιi) + λ ∑
(i,j)∈E

E2(ιi, ιj) (5)

where E1(ιi) represents the likelihood energy and E2(ιi, ιj) represents the prior energy. In the Lazy
Snapping algorithm, Li et al. uses the mean color of each region (denoted as Ci) to represent the node,
and the K-means algorithm was used to cluster the marked foreground pixels set F and the background
pixels set B. The corresponding clustering result centers are denoted as KF

n and KB
m respectively, where

n ∈ [1, . . . , 64], m ∈ [1, . . . , 64].
Li et al. defined the likelihood energy and the priori energy as follows,

E1(ιi = 1) = 0 E1(ιi = 0) = ∞ ∀i ∈ F
E1(ιi = 1) = ∞ E1(ιi = 0) = 0 ∀i ∈ B

E1(ιi = 1) = dF
i

dF
i +dB

i
E1(ιi = 0) = dB

i
dF

i +dB
i
∀i ∈ U

(6)

E2(ιi, ιj) =
∣∣ιi − ιj

∣∣·g(ζij) (7)
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where, the minimal distance of region i to the foreground and background are calculated as
dF

i = min
n
‖Ci − KF

n‖ and dB
i = min

m
‖Ci − KB

m‖ respectively, function g(ξ) is defined as g(ξ) = 1
ξ+1 ,

and ζij = ‖Ci − Cj‖2. It should be noted that although Equations (3) and (6) are exactly opposite, they
can obtain the same segmentation results.

2.3. GrabCut Algorithm

In the process of interactive image segmentation, in order to further reduce user interaction
Rother et al. proposed an efficient GrabCut segmentation algorithm [19]. The algorithm only needs
users to draw a rectangle to cover objects to be segmented, where the outside part of the box is all
the background and the inside part of the frame consists of the foreground and the background
simultaneously. The GrabCut algorithm then applies the iterative maximum flow–minimum cut
algorithm to extract objects automatically. The process of this algorithm is described as follows:

Step 1. Users complete the image marking by setting a rectangle.
Step 2. According to the users’ marking, the image is initially divided into two groups: pixels

inside the rectangle are taken as the foreground (actually a mixture of foreground and background),
and pixels outside the rectangle are taken as the background.

Step 3. A Gaussian mixed model (GMM) is created for the foreground and the background
respectively, and each GMM has K Gaussian models.

Step 4. Dividing each pixel in the foreground into a Gaussian with the largest probability
distribution value in the foreground Gaussian mixed model, and emphatically dividing each pixel
in the background into a Gaussian with the largest probability distribution value in the background
Gaussian mixed model.

Step 5. Updating each Gaussian distribution in the foreground and background respectively.
Step 6. Establishing a graph model by using all image pixels as nodes, the maximum

flow–minimum cut algorithm is then implemented to complete the optimal graph partition of the
current iteration.

Step 7. Repeating Steps 4–6, until the energy obtained in Step 6 no longer changes.
Compared with the GraphCut and Lazy Snapping algorithms, the interaction process of the

GrabCut algorithm is simple. Because all the pixels outside the rectangle belong to background and
their labels have been completely determined, in the iterative process it is only necessary to solve the
optimal energy problem using the maximum flow–minimum cut algorithm for those pixels inside
the rectangle.

2.4. Region Merging Algorithm Based on Maximum Similarity (MSRM)

Ning et al. proposed a region merging algorithm based on maximum similarity (MSRM) [20].
Firstly, this algorithm pre-segments a color image by the MeanShift algorithm [25], then chooses the
Bhattacharyya coefficient to calculate the similarity between adjacent regions, and finally automatically
completes the segmentation process through an iterative region-merging method. The MSRM
algorithm quantizes the RGB color space of an image into 16 × 16 × 16 = 4096 grids and then
calculates the normalized histogram Hi of each area. The similarity between two regions i and j
measured by the Bhattacharyya coefficient is computed as follows:

ρ(i, j) =
4096

∑
k=1

√
Hi(k)·Hj(k) (8)

To complete the automatic image segmentation, Ning et al. defined the following region-merging
rules: For any region R, let Q be an adjacent region of R and a set of all the adjacent regions of Q is
represented as SQ = {SQ

i }i=1,2,···, apparently the condition R ∈ SQ is held. The similarity between Q
and its all adjacent regions is calculated by using Equation (8), and the ranking is performed from
maximum to minimum. If ρ(R, Q) = max

i=1,2,···
ρ(SQ

i , Q) is held, that is the similarity between Q and R is
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the largest, the region Q should be merged into the region R. The merger algorithm is implemented in
two steps: step one is to merge an unlabeled region in set U with a background-labeled region B; and
the other is the automatic merging between unlabeled regions in set U. The MSRM algorithm repeats
the above two steps until iteration convergence when no new merging occurs.

3. Motivation

In the Lazy Snapping algorithm [18], a pre-segmentation scheme is implemented by using
WaterShed algorithm [21], and pixels as nodes in original GraphCut algorithm [13] are replaced by the
obtained pre-segmentation regions as new nodes, which effectively improve segmentation efficiency
and performance. But this algorithm also has the following problems:

(1) Each region in the Lazy Snapping algorithm is modeled by the mean of color in this region, which
is not sufficient to describe each region effectively.

(2) The K-Means algorithm is used in clustering of the marked seed points. This clustering algorithm
is very sensitive to noise, singular points, number of clusters, initial clustering center etc. As a
result, the clustering performance is often problematic.

(3) The clustering process needs to set a larger number of centers. In the Lazy Snapping algorithm,
the number of clusters for the foreground and the background is set to 64. This implies that users
need to mark the foreground and background using at least 64 regions, which leads to much
interactive work.

(4) Because WaterShed segmentation algorithm is based on gradient information of grayscale
image and ignore rich color information, serious over-segmentation happens and the number of
segmentation regions is still abundant.

(5) In order to get better segmentation results, Lazy Snapping algorithm uses a fine-tuning process
to further improve the segmentation accuracy in the post-processing stage, but the consequence
is that the entire interaction process is too cumbersome.

Compared with WaterShed algorithm, MeanShift algorithm [25] performs better, but with much
less segmentation regions. Figure 2 illustrates the segmentation results obtained by using WaterShed
algorithm and MeanShift algorithm respectively on a Flower image with size 500× 351 (175,500 pixels).
WaterShed segmentation result contains 10,072 regions, while the MeanShift segmentation result
contains only 1101 regions. In the proposed algorithm, we adopt the MeanShift algorithm as the
pre-segmentation step to provide a good initialization for the subsequent high effective implementation
of maximum flow–minimum cut algorithm.
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Figure 2. Flower Image and Its Segmentation Results. (a) Flower Image; (b) WaterShed Segmentation
Result; (c) MeanShift Segmentation Result.

On the other hand, compared with the GraphCut algorithm and the Lazy Snapping algorithm, the
MSRM algorithm [20] improved a lot by incorporating an automatic merging mechanism. However,
MSRM algorithm also has the following main problems:
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(1) This algorithm only considers the similarity between adjacent regions in the merging process
without considering the relationship between each region and the foreground/background
information marked by users. Generally speaking the MSRM algorithm does not make full use of
the interactive information input by users, thereby slowing down the region-merging speed and
weakening the segmentation accuracy greatly.

(2) For each region, we need to calculate its color histogram before the merging algorithm is
performed, and in the process of algorithm execution, it also needs to re-calculate the color
histogram many times for each region after completing the region combination. In addition,
in the region-merging process, it needs to calculate the similarity between each region with its
adjacent regions according to Equation (8). In the whole segmentation process, this algorithm
usually requires a large number of region merging, so its space-time overhead is very large.

(3) The execution efficiency of MSRM algorithm has been seriously affected with increasing of the
image size and the number of regions for those images with complex image content. Ning et al.
has pointed out this problem in reference [20], so the application of this algorithm is limited to a
certain extent.

(4) Although MeanShift algorithm has excellent segmentation performance, the over-segmentation
problem still exists in the segmentation results, and edge leak phenomenon occurs from time to
time. But the MSRM algorithm does not do corresponding post-processing to resolve this problem.

By contrast with the GraphCut, Lazy Snapping and MSRM algorithms, the GrabCut algorithm [19]
only needs to set a rectangular area for users to simplify the interaction process greatly. However, this
algorithm also has several major problems:

(1) Image content inside the rectangle marked by users contains both background and foreground
information simultaneously, while the image content outside of the rectangle contains background
information only. Although the algorithm establishes two models for foreground and background
respectively at the same time, how accurate the establishment of the background model will be
directly affects the final segmentation results.

(2) When the size of an object is very large and almost occupies the whole space area in an image, or
when the number of objects is large and is almost distributed in the whole image surface, the
background area marked by users in the GrabCut algorithm is usually small. Due to insufficient
background information, the established background model makes it difficult to represent the
distribution of the background information in the whole image accurately. So the algorithm
cannot obtain ideal segmentation results even after more iterations, and the whole process is
very time-consuming.

(3) This algorithm completes the modeling for the foreground through iterative online learning.
Obviously, it is not effective compared with adopting the direct modeling scheme for the
foreground. However, this modeling method for the GrabCut algorithm is determined by
its interaction mode.

(4) Since the number, area size and position distribution of targets in the image to be segmented
directly determine the setting of the rectangular box, which cannot be changed by users in the
interaction process, the flexibility of the interaction mode is poor. It seems that the execution
efficiency and segmentation performance of the GrabCut algorithm are affected by the setting
of the rectangular box on the image surface. However, from the above analysis, we can further
find that the execution efficiency and segmentation performance of the GrabCut algorithm are
essentially determined by the inherent characteristics of the image itself.

4. Proposed Algorithm

In this paper, we present an efficient superpixel-guided interactive image-segmentation algorithm
based on graph theory. The proposed algorithm is completed in two stages. In the first stage, we first
use the MeanShift algorithm to pre-segment the image to extract superpixels. The superpixels are then
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taken as nodes to construct a directed graph. Finally, we applied the maximum flow–minimum cut
algorithm to complete superpixel-level based graph segmentation. In the second stage, in order to solve
the boundary leakage problem caused by the MeanShift algorithm, the proposed algorithm creates a
mask image, which is termed Trimap, using morphological erosion and expansion operations based
on the first-stage segmentation results. This Trimap is composed of three parts: TrimapUnknown,
TrimapForeground and TrimapBackground, respectively. The TrimapUnknown is a narrow band
area containing both the background and foreground information. The TrimapForeground only
contains foreground information, while the TrimapBackground only contains background information.
Then we establish the corresponding foreground and background models for TrimapForeground
and TrimapBackground respectively, and create a pixel-level graph model for the narrow band area.
Finally the maximum flow–minimum cut algorithm is performed again to complete the pixel-level
based image segmentation.

Because of the relatively large area of each region obtained in the pre-segmentation step using
MeanShift, it is more effective to use the color histogram to represent each region than the color mean.
Hence, as with the MSRM algorithm, the proposed algorithm also uses a color histogram to represent
each superpixel, denoted as Hi for superpixel i. For user-marked foreground F and background B,
a color histogram is also used to model them, which is denoted as HF and HB respectively. We still
use the Bhattacharyya coefficient ρ(i, j) to measure the similarity between adjacent superpixels i and
j, which is defined as Equation (8). In addition to measuring the similarity between superpixels,
the similarity of each superpixel with respect to the foreground and the background is calculated
as follows, 

ρ(i, F) =
Z
∑

k=1

√
Hi(k)·HF(k)

ρ(i, B) =
Z
∑

k=1

√
Hi(k)·HB(k)

(9)

where Z is the number of feature dimensions (size of the color histogram).
The above equations show that we not only consider the similarity between superpixels, but

also consider the relationship between each superpixel and the interaction with the foreground and
background, thus we define the following energy function,

E(ι) = ∑
i∈V

R(ιi) + ∑
(i,j)∈E

∣∣ιi − ιj
∣∣·B(ιi, ιj) (10)

where the first part is the regional term that measures the similarity between each superpixel and the
interaction information with the foreground and background. The second part is the edge information
that measures the similarity between adjacent superpixels. The definition of the regional term and the
edge term is denoted as follows,

R(ιi = 1) =
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where the first part is the regional term that measures the similarity between each superpixel and the 
interaction information with the foreground and background. The second part is the edge 
information that measures the similarity between adjacent superpixels. The definition of the regional 
term and the edge term is denoted as follows, 
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( , ) ( , )i jB i jι ι λ ρ=     (12)

where, 
:{ , }

1 max ( , )
i V j i j N

i jρ
∈ ∈

ϒ = +  , N  represents pixels neighborhood, and λ  is a balance control 

parameter. 

R(ιi = 0) = 0 ∀i ∈ F
R(ιi = 1) = 0 R(ιi = 0) =
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where Z  is the number of feature dimensions (size of the color histogram). 
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i jρ
∈ ∈

ϒ = +  , N  represents pixels neighborhood, and λ  is a balance control 

parameter. 

∀i ∈ B
R(ιi = 1) = ρ(i, F) R(ιi = 0) = ρ(i, B) ∀i ∈ U

(11)

B(ιi, ιj) = λ·ρ(i, j) (12)

where,

Symmetry 2018, 10, x FOR PEER REVIEW  8 of 22 

 

4. Proposed Algorithm 

In this paper, we present an efficient superpixel-guided interactive image-segmentation 
algorithm based on graph theory. The proposed algorithm is completed in two stages. In the first 
stage, we first use the MeanShift algorithm to pre-segment the image to extract superpixels. The 
superpixels are then taken as nodes to construct a directed graph. Finally, we applied the maximum 
flow–minimum cut algorithm to complete superpixel-level based graph segmentation. In the 
second stage, in order to solve the boundary leakage problem caused by the MeanShift algorithm, 
the proposed algorithm creates a mask image, which is termed Trimap, using morphological 
erosion and expansion operations based on the first-stage segmentation results. This Trimap is 
composed of three parts: TrimapUnknown, TrimapForeground and TrimapBackground, 
respectively. The TrimapUnknown is a narrow band area containing both the background and 
foreground information. The TrimapForeground only contains foreground information, while the 
TrimapBackground only contains background information. Then we establish the corresponding 
foreground and background models for TrimapForeground and TrimapBackground respectively, 
and create a pixel-level graph model for the narrow band area. Finally the maximum flow–
minimum cut algorithm is performed again to complete the pixel-level based image segmentation. 

Because of the relatively large area of each region obtained in the pre-segmentation step using 
MeanShift, it is more effective to use the color histogram to represent each region than the color 
mean. Hence, as with the MSRM algorithm, the proposed algorithm also uses a color histogram to 
represent each superpixel, denoted as iH  for superpixel i . For user-marked foreground F  and 

background B , a color histogram is also used to model them, which is denoted as FH  and BH  
respectively. We still use the Bhattacharyya coefficient ( , )i jρ  to measure the similarity between 
adjacent superpixels i  and j , which is defined as Equation (8). In addition to measuring the 
similarity between superpixels, the similarity of each superpixel with respect to the foreground and 
the background is calculated as follows, 

1

1

( , ) ( ) ( )

( , ) ( ) ( )

Z
F

i
k
Z

B
i

k

i F H k H k

i B H k H k

ρ

ρ

=

=

 =   

 =   









 (9)

where Z  is the number of feature dimensions (size of the color histogram). 
The above equations show that we not only consider the similarity between superpixels, but 

also consider the relationship between each superpixel and the interaction with the foreground and 
background, thus we define the following energy function, 

( , )

( ) ( ) ( , )i i j i j
i V i j E

E R Bι ι ι ι ι ι
∈ ∈

= + −       (10)

where the first part is the regional term that measures the similarity between each superpixel and the 
interaction information with the foreground and background. The second part is the edge 
information that measures the similarity between adjacent superpixels. The definition of the regional 
term and the edge term is denoted as follows, 

( 1) ( 0) 0

( 1) 0 ( 0)

( 1) ( , ) ( 0) ( , )

i i

i i

i i

R R i F
R R i B
R i F R i B i U

ι ι
ι ι
ι ρ ι ρ

= = ϒ = = ∀ ∈
 = = = = ϒ ∀ ∈
 = = = = ∀ ∈

 (11)

( , ) ( , )i jB i jι ι λ ρ=     (12)

where, 
:{ , }

1 max ( , )
i V j i j N

i jρ
∈ ∈

ϒ = +  , N  represents pixels neighborhood, and λ  is a balance control 

parameter. 

= 1 + max
i∈V

∑
j: {i,j}∈N

ρ(i, j), N represents pixels neighborhood, and λ is a balance control

parameter.
Figure 3 illustrates the segmentation result using the proposed method for the first stage on a rose

image. As shown in Figure 3a, the edge of the target in the segmentation result is not smooth and there
is some error segmentation due to the over-segmentation of the MeanShift algorithm. Therefore, based
on the segmentation results of the first stage, we perform the segmentation process for the boundary
region again. The corresponding binary image is denoted as S and is shown in Figure 3b. In this
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process, we first morphologically erode the binary image S to obtain a region SF = SΘb which only
contains objects and is described in white color (TrimapForeground) as shown in Figure 3c. Then, the
morphological dilation operation is performed on the binary image S, and the difference between
the dilation result and the erosion result is used as the narrow band region: SU = (S⊕ b)− (SΘb),
which contains both foreground and background and is represented in gray color (TrimapUnknown)
in Figure 3c. The remaining area only contains the background information and can be expressed as
SB = S− (SU + SF); we show it in black color (TrimapBackground) in Figure 3c. Here, we use the
square structural element for the morphology process, where the element b is in size (2d + 1)× (2d + 1)
and d is a positive integer. Finally, we obtain a triple mask image (Trimap) as in Figure 3c. We then use
the Orchard–Bouman clustering algorithm [27] to create the corresponding Gaussian mixed model
for the foreground and background, respectively. For each Gaussian mixed model the number of
Gaussians is denoted as K. In addition, in order to solve the over-segmentation problem caused by
the MeanShift algorithm and further improve the segmentation accuracy of the narrow band region,
this paper takes pixels at the narrow band region as nodes to build a graph again and then applies the
maximum flow–minimum cut algorithm to obtain the final segmentation results.
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The whole process of the second stage is basically similar to the GrabCut algorithm. But the 
difference is that the foreground region in the proposed algorithm is completely determined and is 
no longer an unknown region containing both foreground and background information. Therefore, 
the color model established in the first stage of the proposed algorithm does not need to be updated. 
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first stage is very small, the determined foreground and background regions almost contain all the 
foreground information and background information simultaneously. Therefore the foreground and 
background models established in the proposed algorithm are very accurate. In the second stage, we 
use the same energy function as Equation (10) in the first stage, but the corresponding two energy 
terms are redefined as follows, 

( 1) ( 0) 0 TrimapForeground

( 1) 0 ( 0) TrimapBackground

( 1) ( ) ( 0) ( ) TrimapUnknown

i i

i i

i B i F

R R i
R R i
R D i R D i i

ι ι
ι ι
ι ι

= = ϒ = = ∀ ∈
 = = = = ϒ ∀ ∈
 = = = = ∀ ∈

 (13)

2

2
( , ) exp

( , ) 2

i j
i j

I I
B

dist i j
λι ι

σ

 − = −
 
 

 (14)

Figure 3. First stage segmentation result and ternary mask images. (a) Segmentation result in the first
stage; (b) binary result; (c) Trimap.

The whole process of the second stage is basically similar to the GrabCut algorithm. But the
difference is that the foreground region in the proposed algorithm is completely determined and is
no longer an unknown region containing both foreground and background information. Therefore,
the color model established in the first stage of the proposed algorithm does not need to be updated.
Moreover, the maximum flow–minimum cut algorithm only needs to execute once to get the ideal
segmentation results. The reason is that because the area size of the determined narrow band in the
first stage is very small, the determined foreground and background regions almost contain all the
foreground information and background information simultaneously. Therefore the foreground and
background models established in the proposed algorithm are very accurate. In the second stage, we
use the same energy function as Equation (10) in the first stage, but the corresponding two energy
terms are redefined as follows,

R(ιi = 1) =
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where Z  is the number of feature dimensions (size of the color histogram). 
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where, Ii represents the color information of pixel i and
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where the first part is the regional term that measures the similarity between each superpixel and the 
interaction information with the foreground and background. The second part is the edge 
information that measures the similarity between adjacent superpixels. The definition of the regional 
term and the edge term is denoted as follows, 

( 1) ( 0) 0

( 1) 0 ( 0)

( 1) ( , ) ( 0) ( , )

i i

i i

i i

R R i F
R R i B
R i F R i B i U

ι ι
ι ι
ι ρ ι ρ

= = ϒ = = ∀ ∈
 = = = = ϒ ∀ ∈
 = = = = ∀ ∈

 (11)

( , ) ( , )i jB i jι ι λ ρ=     (12)

where, 
:{ , }

1 max ( , )
i V j i j N

i jρ
∈ ∈

ϒ = +  , N  represents pixels neighborhood, and λ  is a balance control 

parameter. 

= 1 + max
i∈V

∑
j: {i,j}∈N

B(ιi, ιj). In the process of

building a graph model, we use 8 neighborhoods, and since λ ≥ B(ιi, ιj) is satisfied, we set K = 8λ + 1.
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Dx(i) (variable x satisfies x ∈ {F, B}) is the distribution of the ith pixel in the foreground or background
model following the Gaussian mixed model, which is calculated as:

Dx(i) = − log
K

∑
k=1

πx
k

1√
det ∑x

k
exp

(
−1

2
[Ii − µx

k ]
T
(
∑x

k

)−1
[Ii − µx

k ]

)
(15)

where, πx
k denotes the weight of the kth Gaussian distribution in the Gaussian mixed model of the

foreground or background, µx
k and ∑x

k denote the mean and covariance matrix of the kth Gaussian
distribution in the foreground or background model, and det ∑x

k denotes the determinant of covariance
of matrix ∑x

k .
From the above description of the proposed algorithm, we can see that the proposed algorithm

only requires a small amount of interaction information and can obtain ideal segmentation results
in a relatively short period of time. As shown in Figure 2, before executing the GraphCut algorithm,
users are asked to input interactive information in Figure 2a. However, each pixel needs to be
determined. As for Figure 2b, although it is area-based segmentation, it is still difficult for users
to decide which areas should be marked before performing the Lazy Snapping algorithm, while in
Figure 2c, the large area size and small number of areas provides guidance for user interaction and
simplifies the interaction process. In addition, compared with the MSRM algorithm, the proposed
algorithm not only takes the similarity between regions into account, but also the similarity between
each region and the foreground/background information. Furthermore, the proposed algorithm could
accurately determine the foreground and background regions after the first stage segmentation process.
Compared with the GrabCut algorithm, the established background model is more accurate and, most
importantly, the foreground model is also established at the same time. For those images that contain
only one large size object or a large number of objects almost distributed over the entire image, it
is difficult to obtain ideal segmentation results using the GrabCut algorithm even if the maximum
flow–minimum cut algorithm is applied more times.

5. Experimental Results

We performed the experiment on some public datasets. Figure 4 shows three testing images
and Table 1 shows some basic information of the testing images, including the image size, the total
number of pixels, the number of superpixels segmented using the WaterShed [21] and MeanShift [25]
algorithms, respectively. As can be clearly seen from the table, compared with the number of pixels,
the number of superpixels processed by the pre-segmentation techniques has been greatly reduced,
where we can see that the MeanShift algorithm is more effective than the WaterShed algorithm. In the
experiment, the parameters of our method were set as follows: the size of the color histogram was
set as Z = 4096, the balance control parameter in the graph model was set as λ = 1.0, the size of the
square structural element in the morphology process was set as b = 2, and the number of Gaussians of
GMMs in the foreground and background models was set as K = 5. All the parameter values were set
by following exhaustive experiments.
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Table 1. Number of pixels and superpixels of three test images.

Test Image Image Size # of Pixels # of Superpixels
for WaterShed

# of Superpixels
for MeanShift

Flower 500 × 351 175,500 10,072 1101
Person 399 × 384 153,216 9632 560
Animal 335 × 295 98,825 7131 196

Figure 5 shows the interaction information marked by users for the flower image. For the sake of
fairness, the GraphCut [13], Lazy Snapping [18] and MSRM [20] algorithms and the proposed algorithm
use the same interaction information, as shown in Figure 5a. The red strokes mark foreground
information and the blue strokes mark background information. Because the GrabCut algorithm [19]
completes the user interaction by setting a rectangular area, different from the above four algorithms,
we only need to mark a red box as shown in Figure 5b. All pixels outside of the red box belong to the
background, the others containing both the foreground and background are segmented iteratively
by the maximum flow–minimum cut algorithm. Figure 6 illustrates the corresponding segmentation
results of each algorithm, where the first row is the original image-segmentation results and the second
row is the corresponding binary images. From the experimental results, we can see that the GraphCut
and Lazy Snapping algorithms have a large number of misclassifications. Although the GrabCut
algorithm is good at boundary processing, there are some misclassifications inside the target, which
can be seen from the corresponding binary image. The segmentation result of the MSRM algorithm
is ideal inside the foreground and background, but over-segmentation is serious around the edge of
the target, which is similar to the segmentation result in the first stage of the proposed algorithm,
as shown in Figure 3a. After the second pixel-level based segmentation for the narrow band, the
proposed algorithm effectively solves the edge leakage problem, resulting in a good segmentation
result, as shown in Figure 6e below.
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Figure 7 illustrates the interaction information marked by users for the person image. Since the
number of regions partitioned by the WaterShed algorithm is still large and the area size is generally
small, no guide information can be provided to users in the interaction process. Therefore, in this
experiment, the GraphCut and Lazy Snapping algorithms use the same interaction information.
Because the MSRM algorithm and our algorithm use the same pre-segmentation MeanShift algorithm,
the two algorithms use the same interaction information. As shown in Figure 7c, only a few marks are
needed to determine a large amount of background and foreground information. The corresponding
segmentation results are shown in Figure 8. Because of the fewer background area markers, as shown
in Figure 7a, a large number of misclassifications in the GraphCut and Lazy Snapping algorithms
occur. The main reason is that because users find it hard to make accurate interactive marking without
guidance, this problem becomes more prominent when the image content is complex. As with the
flower image, the segmentation result of GrabCut algorithm is also acceptable. This is because the
background information outside the rectangle area can fully represent the background distribution
of the image, and the established background model is relative accurate. However, only having the
accurate background model is not enough, and we can see some misclassifications inside the target.
Furthermore, because the MeanShift algorithm has the problem of edge leakage in the segmentation
process, the misclassification of the segmentation result of the MSRM algorithm is still serious at the
target edge, as shown in Figure 8d. In contrast, the segmentation result of the proposed algorithm
performs much better than the others in terms of segmentation accuracy, especially in the target
boundary areas, as shown in Figure 8e.
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In addition, Figure 9 shows the user interaction for the animal image and the segmentation results
are shown in Figure 10. From the segmentation results, we can find that the segmentation results of
the GraphCut and Lazy Snapping algorithms are not perfect even when a lot of marker information
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is used. For example, it is difficult for users to mark the narrow tail region, which leads to false
segmentation of this region. For the GrabCut algorithm, because the two targets (dogs) are scattered in
the image, the marked background information is not enough to represent the background distribution
effectively, and a large amount of background information is contained in the rectangular area. Thus,
it is difficult for the GrabCut algorithm to learn the background model accurately. Although the
MSRM algorithm has the same initial conditions with the proposed algorithm, it can be seen from
Figure 9c that the segmentation results by using the MSRM algorithm have a large number of errors.
The main reason is that the MSRM algorithm only considers the similarity among regions and does
not fully consider the relationship between regions and the interaction information marked by users.
Although the GraphCut, Lazy Snapping, GrabCut and MSRM algorithms can improve segmentation
accuracy by adding more markers, the interaction process is more complicated. However, the proposed
method achieves very promising segmentation results under the same user interaction or less marking
conditions, which is more effective in practical applications.

Table 2 compares the running time of the five algorithms. As can be seen from the table, the
proposed algorithm has almost the same efficiency in terms of running time with the GraphCut and
Lazy Snapping algorithms. Although the segmentation performance of the GrabCut algorithm is
relatively good, it is not efficient to use in real-time applications. The execution efficiency of the
MSRM algorithm is mainly determined by the number of partitioned regions, which is also not
robust for practical implementation. For our proposed algorithm, the high efficiency of the maximum
flow–minimum cut algorithm and its property of being less sensitive to the number of regions makes
it efficient and useful for real-time segmentation.
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In order to further compare our proposed algorithm with the other four algorithms, we perform a
detailed experiment on the Microsoft GrabCut image dataset [19], which is composed of 30 images
provided with ground truth. Some testing images and the corresponding ground truth are shown in
Figure 11. In this experiment, we evaluated the segmentation performance using the misclassification
error (ME) [5], Rand index (RI) [28] and boundary recall (BR) [26]. ME is defined as follows,

ME = 1− |BG ∩ BS|+ |FG ∩ FS|
|BG|+ |FG|

(16)

where BG and FG denote the background and foreground pixels of the ground truth (G), BS and FS
denote the background and foreground pixels of the segmentation result (S), and |•| is the cardinality
of the set. The ME measures the percentage of wrongly assigned pixels, which ranges from zero for no
error and one for completely wrong.
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RI computes the ratio of the number of pixel-pairs sharing the same label relationship between
the segmentation result (S) and the ground truth (G). The definition of RI is described as follows,
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where N denotes the total number of pixels, I(·) is a binary function with I(1) = 1 and I(0) = 1. The RI
takes values in the range [0, 1], where a score of zero indicates the labelling of the test segmentation is
totally opposite to the ground truth and 1 indicates that they are the same on every pixel pair.

BR measures the percentage of the ground truth boundaries recovered by the segmentation
boundaries and is defined as follows,

BR =
∑p∈Gb

I
(
minq∈Sb‖p− q‖ < 2

)
|Gb|

(18)

where Sb and Gb denote the union sets of segmentation boundaries and ground truth boundaries,
respectively.

The segmentation results are illustrated in Figure 12, Tables 3–5. Similarly, the GraphCut, Lazy
Snapping algorithm and MSRM algorithms and the proposed algorithm use the same interaction
information, as shown in Figure 12a, where the red strokes mark the foreground and the blue strokes
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mark the background. The green rectangular box is used for the GrabCut algorithm as also shown in
Figure 12a. From the segmentation results, we find that the proposed algorithm obtains the overall
best segmentation performance in ME, RI and BR measures.
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banana2 0.1718 0.0183 0.0087 0.0199 0.0102 
banana3 0.1513 0.0226 0.0148 0.0197 0.0146 

book 0.4628 0.0239 0.0218 0.0207 0.0218 
bool 0.1146 0.0397 0.1708 0.0242 0.0105 
bush 0.2149 0.1242 0.0188 0.0194 0.0121 

ceramic 0.2142 0.0107 0.0083 0.0114 0.0072 

Figure 12. Segmentation results on the GrabCut image dataset for different algorithms. (a) Interaction
markers; (b) GraphCut; (c) Lazy Snapping; (d) GrabCut; (e) MSRM; (f) proposed algorithm.

Table 3. Misclassification error (ME) comparison.

Images GraphCut LazySnapping GrabCut MSRM Proposed Algorithm

banana1 0.6030 0.0142 0.2942 0.0163 0.0097
banana2 0.1718 0.0183 0.0087 0.0199 0.0102
banana3 0.1513 0.0226 0.0148 0.0197 0.0146

book 0.4628 0.0239 0.0218 0.0207 0.0218
bool 0.1146 0.0397 0.1708 0.0242 0.0105
bush 0.2149 0.1242 0.0188 0.0194 0.0121

ceramic 0.2142 0.0107 0.0083 0.0114 0.0072
cross 0.0112 0.0121 0.2736 0.0151 0.0129
doll 0.2654 0.1462 0.0121 0.0069 0.0050

elefant 0.0891 0.0361 0.0738 0.0366 0.0345
flower 0.0412 0.0073 0.0038 0.0061 0.0033

fullmoon 0.0014 0.0014 0.0034 0.0039 0.0014
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Table 3. Cont.

Images GraphCut LazySnapping GrabCut MSRM Proposed Algorithm

grave 0.1192 0.0398 0.0068 0.0076 0.0059
llama 0.4716 0.0295 0.009 0.2397 0.0127

memorial 0.0912 0.0138 0.0159 0.0236 0.0145
music 0.0157 0.0090 0.0111 0.0082 0.0062

person1 0.1519 0.0088 0.0087 0.0072 0.0053
person2 0.1797 0.0124 0.0293 0.0068 0.0057
person3 0.4749 0.2164 0.0048 0.0080 0.0038
person4 0.2364 0.0316 0.0421 0.0144 0.0129
person5 0.4488 0.0307 0.0162 0.0236 0.0046
person6 0.0807 0.0628 0.0273 0.0597 0.0090
person7 0.0593 0.0263 0.0071 0.0103 0.0024
person8 0.5804 0.2487 0.0127 0.0232 0.0086
scissors 0.0237 0.0168 0.0174 0.0491 0.0129
sheep 0.0260 0.0157 0.0040 0.0048 0.0035
stone1 0.0509 0.0442 0.0024 0.0033 0.0020
stone2 0.0037 0.0479 0.0038 0.0052 0.0028
teddy 0.0065 0.0081 0.0070 0.0431 0.0095
tennis 0.0658 0.0131 0.0426 0.0150 0.0100

Avg. ME 0.1809 0.0444 0.0391 0.0251 0.0092

Table 4. Rand index (RI) comparison.

Images GraphCut LazySnapping GrabCut MSRM Proposed Algorithm

banana1 0.5212 0.9720 0.5847 0.9679 0.9807
banana2 0.7154 0.9641 0.9828 0.9610 0.9799
banana3 0.7431 0.9558 0.9708 0.9613 0.9712

book 0.5028 0.9534 0.9573 0.9594 0.9573
bool 0.7971 0.9238 0.7167 0.9527 0.9791
bush 0.6625 0.7824 0.9630 0.9620 0.9761

ceramic 0.6633 0.9789 0.9836 0.9775 0.9857
cross 0.9779 0.9762 0.6025 0.9703 0.9745
doll 0.6100 0.7504 0.9761 0.9862 0.9900

elefant 0.8377 0.9304 0.8632 0.9296 0.9334
flower 0.9209 0.9855 0.9924 0.9878 0.9934

fullmoon 0.9973 0.9972 0.9931 0.9922 0.9972
grave 0.7900 0.9236 0.9865 0.9849 0.9883
llama 0.5016 0.9428 0.9823 0.6355 0.9750

memorial 0.8342 0.9727 0.9687 0.9539 0.9714
music 0.9692 0.9821 0.9780 0.9838 0.9877

person1 0.7424 0.9826 0.9828 0.9856 0.9895
person2 0.7052 0.9755 0.9432 0.9865 0.9887
person3 0.5013 0.6608 0.9904 0.9842 0.9924
person4 0.6389 0.9388 0.9193 0.9716 0.9744
person5 0.5052 0.9404 0.9682 0.9539 0.9909
person6 0.8517 0.8823 0.9468 0.8878 0.9821
person7 0.8885 0.9488 0.9858 0.9796 0.9952
person8 0.5129 0.6263 0.9748 0.9547 0.9829
scissors 0.9538 0.9670 0.9658 0.9066 0.9746
sheep 0.9493 0.9691 0.9920 0.9904 0.9930
stone1 0.9033 0.9154 0.9953 0.9934 0.9960
stone2 0.9927 0.9088 0.9924 0.9897 0.9944
teddy 0.9872 0.9839 0.9862 0.9176 0.9811
tennis 0.8771 0.9741 0.9185 0.9705 0.9801

Avg. RI 0.7685 0.9222 0.9354 0.9546 0.9819
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Table 5. Boundary recall (BR) comparison.

Images GraphCut LazySnapping GrabCut MSRM Proposed Algorithm

banana1 0.3891 0.7743 0.7133 0.8494 0.8901
banana2 0.1727 0.6453 0.8734 0.7311 0.8557
banana3 0.4967 0.6720 0.7555 0.8218 0.7588

book 0.2874 0.6534 0.6834 0.6854 0.6854
bool 0.6881 0.9002 0.4802 0.7749 0.8987
bush 0.7676 0.5406 0.6321 0.7746 0.8061

ceramic 0.6440 0.8904 0.9348 0.9026 0.9470
cross 0.9451 0.9382 0.4041 0.9375 0.9362
doll 0.2756 0.5273 0.7675 0.9450 0.9957

elefant 0.7738 0.7872 0.6354 0.7803 0.7941
flower 0.9286 0.9368 0.9852 0.9669 0.9867

fullmoon 0.9968 1.0000 0.8355 0.7081 1.0000
grave 0.2189 0.8172 0.7341 0.7730 0.7688
llama 0.4774 0.5590 0.8563 0.3394 0.7616

memorial 0.6945 0.6988 0.6514 0.6336 0.6309
music 0.8555 0.8389 0.8244 0.8551 0.8678

person1 0.6668 0.8984 0.8074 0.9462 0.9421
person2 0.5925 0.7290 0.6601 0.8740 0.9081
person3 0.5294 0.9066 0.9302 0.9244 0.9638
person4 0.5735 0.6110 0.5065 0.7678 0.7771
person5 0.2840 0.7082 0.5758 0.9399 0.9283
person6 0.7457 0.5923 0.6162 0.6113 0.8139
person7 0.9904 0.9470 0.8512 0.8767 0.9869
person8 0.0998 0.3975 0.6513 0.7151 0.7114
scissors 0.6674 0.7350 0.7384 0.5870 0.8309
sheep 0.8541 0.7197 0.8005 0.7996 0.8445
stone1 0.6539 0.7010 0.9843 0.9838 0.9864
stone2 0.9591 0.7172 0.9702 0.9707 0.9647
teddy 0.9982 0.9836 0.9933 0.7307 0.9707
tennis 0.9044 0.8029 0.5563 0.7522 0.8049

Avg. BR 0.6377 0.7543 0.7470 0.7986 0.8672

6. Conclusions

Interactive image segmentation has a very wide range of applications in the field of natural
image editing and other practical applications. By comparing the existing classical algorithms
including GraphCut, Lazy Snapping, GrabCut and MSRM, this paper summarizes the advantage
and disadvantage of each algorithm. On this basis, we propose an efficient superpixel-guided
interactive image-segmentation algorithm based on graph theory. Our algorithm considers the
MeanShift algorithm as a pre-segmentation technique and sequentially considers the segmented
superpixels as nodes to establish the graph model, thus effectively improving the execution efficiency
of the maximum flow–minimum cut algorithm. The proposed algorithm uses a color histogram
to represent each superpixel, which is more efficient than the regional color mean information.
The foreground and background are also all modeled by color histograms, and thus no additional
modeling process is needed. In the process of interaction, the pre-segmented superpixels can
provide guidance information for users, which simplifies the interaction process and automatically
determines a large amount of foreground or background information with a small amount of
markers. Considering the over-segmentation problem of the MeanShift algorithm in the segmentation
process, the proposed algorithm uses morphological operation to construct a narrowband region
near the target boundary, and simultaneously determines the foreground and background regions.
After that, the corresponding foreground and background models are established, and then a graph
model for the narrow-band region is constructed taking pixels as nodes. Finally, we execute the
maximum flow–minimum cut algorithm again to effectively improve the segmentation accuracy
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around the object boundary. Experiments show that the proposed algorithm obtains promising
segmentation performance compared with the GraphCut, Lazy Snapping, GrabCut and MSRM
algorithms. However, because the proposed algorithm is fully based on the MeanShift algorithm, the
segmentation performance of our algorithm depends on the segmentation results of the MeanShift
algorithm. In future work, we will study multi-scale superpixel-based image-segmentation algorithms.
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